CONTOH SOAL DAN JAWABAN LIMIT METODE PEMFAKTORAN

Adakalanya nilai limit suatu fungsi tidak dapat ditentukan hanya dengan metode substitusi alasannya dihasilkan bilangan yang tak tentu. Salah satu alternatif yang dapat dilakukan ialah dengan metode pemfaktoran. Jika kita menggunakan metode substitusi untuk menyelesaikan masalah limit dan menemukan hasil tak tentu berupa nol per nol atau tak hinga dibagi tak hingga, maka kita dapat menggunakan beberapa metode lain menyerupai pemfaktoran, perkalian sekawan, dalil L’Hospital, dan beberapa rumus praktis lainnya yang hanya mampu diterapkan untuk fungsi-fungsi tertentu. Pada kesempatan ini kita akan membahas beberapa pola soal dan penyelesaian limit fungsi menggunakan metode pemfaktoran. Metode pemfaktoran dapat digunakan kalau fungsi yang dilimitkan dapat difaktorkan.

Contoh Soal :

  1. Hitunglah nilai dari :
    lim
    x → 4
    2x2 + x − 15
    x2 + 7x + 12

    Pembahasan :

    lim
    x → 4
    2x2 + x − 15 = lim
    x → 4
    (2x − 5)(x + 3)
    x2 + 7x + 12  (x + 4)(x + 3)
    lim
    x → 4
    2x2 + x − 15 = lim
    x → 4
    (2x − 5)
    x2 + 7x + 12  (x + 4)
    lim
    x → 4
    2x2 + x − 15 = 2(4) − 5
    x2 + 7x + 12   4 + 4
    lim
    x → 4
    2x2 + x − 15 = 3
    x2 + 7x + 12 8

  2. Tentukan nilai dari limit fungsi di bawah ini.
    lim
    x → 4
    3x2 − 14x + 8
      x2 − 3x − 4

    Pembahasan :

    lim
    x → 4
    3x2 − 14x + 8 = lim
    x → 4
    (3x − 2)(x − 4)
      x2 − 3x − 4  (x + 1)(x 4)
    lim
    x → 4
    3x2 − 14x + 8 = lim
    x → 4
    (3x − 2)
      x2 − 3x − 4  (x + 1)
    lim
    x → 4
    3x2 − 14x + 8 = 3(4) − 2
      x2 − 3x − 4   4 + 1
    lim
    x → 4
    3x2 − 14x + 8 = 10
      x2 − 3x − 4  5
    lim
    x → 4
    3x2 − 14x + 8 = 2
      x2 − 3x − 4
  3. Tentukan nilai dari :
    lim
    x → 2
    x2 − 5x + 6
    x2 + 2x − 8

    Pembahasan :

    lim
    x → 2
    x2 − 5x + 6 = lim
    x → 2
    (x − 3)(x − 2)
    x2 + 2x − 8 (x + 4)(x 2)
    lim
    x → 2
    x2 − 5x + 6 = lim
    x → 2
    (x − 3)
    x2 + 2x − 8 (x + 4)
    lim
    x → 2
    x2 − 5x + 6 = 2 − 3
    x2 + 2x − 8 2 + 4
    lim
    x → 2
    x2 − 5x + 6 = -1
    x2 + 2x − 8  6

  4. Tentukan nilai dari :
    lim
    x → 3
       x2 − 9
    x2 − x − 6

    Pembahasan :

    lim
    x → 3
       x2 − 9 = lim
    x → 3
    (x + 3)(x − 3)
    x2 − x − 6 (x + 2)(x 3)
    lim
    x → 3
       x2 − 9 = lim
    x → 3
    (x + 3)
    x2 − x − 6 (x + 2)
    lim
    x → 3
       x2 − 9 = 3 + 3
    x2 − x − 6 3 + 2
    lim
    x → 3
       x2 − 9 = 6
    x2 − x − 6 5

  5. Tentukan nilai dari :
    lim
    x → 2
    (    2     8 )
    x − 2 x2 − 4
    Pembahasan :

    lim
    x → 2
    (    2     8 ) = lim
    x → 2
    2(x + 2) − 8
    x − 2 x2 − 4      x2 − 4
    lim
    x → 2
    (    2     8 ) = lim
    x → 2
    2x + 4 − 8
    x − 2 x2 − 4      x2 − 4
    lim
    x → 2
    (    2     8 ) = lim
    x → 2
    2x − 4
    x − 2 x2 − 4 x2 − 4
    lim
    x → 2
    (    2     8 ) = lim
    x → 2
        2(x − 2)
    x − 2 x2 − 4 (x + 2)(x − 2)
    lim
    x → 2
    (    2     8 ) = lim
    x → 2
        2
    x − 2 x2 − 4 (x + 2)
    lim
    x → 2
    (    2     8 ) =    2
    x − 2 x2 − 4 2 + 2
    lim
    x → 2
    (    2     8 ) = 1
    x − 2 x2 − 4 2